
Scalable architecture of constant division on FPGA

Danila Gorodecky
INESC-ID, Instituto Superior Tecnico,

Universidade de Lisboa,

Portugal;

EHU / EPAM School of Digital Engineering,

Lithuania

Email: danila.gorodecky@gmail.com

Leonel Sousa
INESC-ID, Instituto Superior Tecnico,

Universidade de Lisboa,

Portugal

Email: leonel.sousa@tecnico.ulisboa.pt

Abstract—This paper proposes a method for hardware integer
division by a constant, based only on combinational logic, i.e.
without requiring storage and feedback in calculations. The
proposed scheme for division consists of adders and encoders,
where encoders are systems of Boolean functions. The proposed
divisor provides at the output the quotient and the residue (at
the same time or separately). Experiments conducted on FPGA
demonstrate up to three times improvement in area cost compare
to the optimized divisor circuits provided by the Xilinx tools,
while the delay is improved by 25% for dividends with less
than 48-bit. It is also shown in this paper that the proposed
approach is scalable, and in comparison to the state-of-the-art,
the proposed approach improves the area or the delay, or both
for many constant values and input bit sizes.

I. INTRODUCTION AN STATE-OF-THE-ART

The division is the most complex of the four fundamen-

tal arithmetic operations and, in general, does not produce

an exact result. In modern microprocessors, integer division

takes many clock cycles, comparable to floating-point division

[1]. The target circuit area impacts how the result of the

division can be generated: quotient, quotient and residue,

approximation, precision of calculation [2], [3]. Overall, the

implementation of a hardware division on FPGA and ASIC

can pose some unique challenges, including the complexity of

design, the high cost of development, the need for extensive

verification and testing, and the need to protect intellectual

property [2]–[7].

Based on functionality, implementation, performance, hard-

ware architecture, etc., the division algorithms can be dis-

tinguished as iterative, recursive, variable latency, parallel,

pipelined, sequential, slow, fast, and subtractive [2], [3], [6]–

[18]. Non-restoring and restoring algorithms are two common

approaches for performing hardware division in contemporary

arithmetic units on FPGAs and ASICs [2], [3], [8], [10], [12],

[15], [19]–[22].

Restoring-based and non-restoring-based division algorithm

uses a sequence of subtractions and multiplications to compute

the quotient and remainder. These algorithms work by repeat-

edly subtracting the divisor from the dividend and shifting the

quotient and the remainder until the remainder is less than

the divisor. Due to the specifics of the division, its hardware

implementation typically requires memory, for instance, to

store partial reminders, shift intermediate quotient, or control

loop addition and subtraction, to perform the required set

of iterations [23]–[27]. Electronic design automation tools

generate hardware dividers for arbitrary values, for a limited

bit-range of dividends and divisors. However, typically, they

do not provide simultaneously the quotient and the remainder.

For example, Xilinx 2015 and Synopsys 2013 and earlier

versions can not generate general schemes of division/modulo

calculation, only for very specific divisors such as 2k − 1.

The division by integer constants is an operation that

often occurs in different areas and applications [28], such as

counters [26], cryptography [29], [30], networks [24], micro-

processors [31], [32], residue number system [33], and for

accessing interleaved memory banks in numbers that are not

powers of two. Hardware division by small integer constants

was analysed in depth in [37]. The proposed recurrent and

linear architectures, originally reported in [36], are based on

the observation that each iteration body consists of Euclidean

division. It is shown that these architectures can be efficiently

implemented in Field Programmable Gate Arrays (FPGA) for

division by small constants or products of small constants,

in comparison to other architectures, such as the Binary Tree

Constant Division, and the multiplication by the reciprocal

ones. The implementation of these architectures is serial,

operating in a number of clock cycles that is proportional to

the number of bits of the divisor. By unrolling the control

loop, a combinational circuit can be obtained, but in practice,

registers have to be introduced for pipelining the operation of

the divider. Moreover, the table size to implement the body

of the operation grows exponentially with the size of the

constant, which makes linear architectures suitable only for

small constant divisors.

In this paper, we propose an algorithm for hardware integer

division by a constant, for which the divisor can take any con-

stant value. Based on combinational logic, its implementation

does not store intermediate results. It only uses adders and

encoders. Encoders represent systems of Boolean functions.

By splitting Boolean functions, the size of the tables does not

grow with the size of the constant divisor, which makes the

solution scalable. Thus, the proposed architectures are suitable

for arbitrary integer values, both for dividends and divisors,

and output both the quotient and the residue.

This paper is organised as follows. Section II introduces the

Fig. 1: Common scheme of the division.

proposed method for division, with a detailed explanation, an

example, and the procedure for division including a Verilog

list for its implementation. The implementation is discussed in

Section III. The experimental results obtained on FPGA are

discussed in Section IV, followed by conclusions and a brief

outline of future work.

II. THE DIVISION METHOD

Let’s consider for the division the dividend X and the

constant divider d; the output are the quotient Q and the

residue R, as expressed in (1), for X , d, Q, and R integers.

X = Q · d+R ;
X

d
= {Q,R} ;

⌊X
d

⌋
= Q. (1)

The common scheme of the division is represented in Fig. 1.

Every digit of X is divided by d, which results in a quotient

and a residue. The sum of all quotients, plus the quotient

of the division of the sum of all residues gives the final

quotient value; the remainder is the final residue value. Note

that, in order to reduce hardware, X1 (the least significant

bits of the dividend (xk, xk−1, . . . , x1)) doesn’t divide since

it consists of the same number of bits as the divisor, thus the

quotient Q1 equals 0 or 1, and X1 is added to other residues

R2, R3, . . . , Rk.

Let us consider, as an example, X = 128 = 8 + 20 + 100
and d = 7. The quotient of the division of 8 by 7 is 1 and

the residue is 1; the quotient of the division of 20 by 7 is 2

and the residue is 6; the quotient of the division of 100 by 7

is 14 and the residue is 2. The sum of intermediate quotients

is 1 + 2 + 14 = 17 and the quotient of the division of the

sum of residues, 1 + 6 + 2, is equals to 1 and the residue is

2. Thus, the quotient of the division equals 17 + 1 = 18 and

the residue is 2.

The main steps of the proposed method for division by a

constant are the following;

• the target hardware technology, ASIC or FPGA is speci-

fied;

• the dividend is split;

• the partial quotients are calculated;

• the minimization and representation of the Boolean func-

tion are performed;

• the digital circuit for implementing the divider is de-

signed.

Let’s illustrate the mentioned five-step procedure of division

on an example of the division of 16-bit integers by d = 13,

targeting an FPGA Xilinx Virtex-7.

A. Target hardware

The target hardware defines the way the Boolean minimiza-

tion is performed:

• custom library for ASIC entails the implementation of

either binary decision diagram minimization, two-level

minimization, or other minimizations according to the

custom library characteristics;

• number of look-up-tables (LUTs) and inputs of the LUTs

of the targeted FPGA defines the type of multi-level

Boolean minimization.

As Virtex-7 is equipped with 6-input LUTs, we consider

6-input Boolean functions. The encoders of the divider archi-

tecture are systems of minimized Boolean functions. Thus,

minimization is crucial on the required number of LUTs on

FPGA, and on the required number of logic elements on ASIC.

B. Splitting dividend

The n-bit dividend X is split into s = �n
k � sub-vectors,

where k is the number of bits of the divisor d. In binary,

multiplication by 2k is equivalent to the concatenation of k
zeros as the least significant bits. For instance, multiplication

of (10101) (21 in decimal) by 26 is (10101 000000︸ ︷︷ ︸
k=6

) (1344 in

decimal).

Generalizing this idea, any integer can be split into a set

of bit sub-vectors, in this case, we split a dividend into sub-

vectors with the same range as the divisor (k). For instance,

16-bit X = (x16, x15, · · · , x1) equals to (1101101010111001)
(in decimal 55993) can be split into four 4-bit sub-vectors

X = (X4, X3, X2, X1):

(1101︸︷︷︸
X4

1010︸︷︷︸
X3

1011︸︷︷︸
X2

1001︸︷︷︸
X1

) =

X1 + 24 ·X2 + 28 ·X3 + 212 ·X4 =

(1001) + 24(1011) + 28(1010) + 212(1101) =

(1001) + (10110000) + (101000000000)+

(1101000000000000).

C. Partial quotients calculation

The next step of the proposed method is to define quotients

Q1, Q2, . . . , Qs and residues R1, R2, . . . , Rs from the division

of every sub-vector X1, X2, . . . , Xs by the constant d, respec-

tively, as defined in (2), with i = 1, s and Qmax
i = max{Qi}.

Xi

d
= {Qmax

i , Ri} ,
⌊Xi

d

⌋
= Qmax

i . (2)

The aim of splitting the dividend into sub-vectors is to

represent the result of the division base on s truth tables,

where the i-th table (i = 1, s) represents sub-quotients Qi

from the division of sub-dividends Xi by divider d. Thus,

the calculation of sub-quotient can be achieved as a system

of j-Boolean functions with k inputs (variables), where j is

bit-range of max{Qi}, i.e.

Qi = Qi(Xi) , Ri = Ri(Xi). (3)

For the previous example, X = (x16, x15, · · · , x1) and d =
13:

– max{Q1} = 1, when X1 = 20 · x1 + 21 · x2 + 22 · x3 +
23 · x4 > 12, and the greatest residue among all possible

R1 is 12 (if x3 = x4 = 1 and x1 = x2 = 0) (this step is

not included in the hardware architecture, because adding

X1 to other residues is more efficient than calculating Q1

and R1, as shown next);

– max{Q2} = 18 (5-bit number), when X2 = 24 · x5 +
25 · x6 + 26 · x7 + 27 · x8 > 233 (see the last line of

Table II), and the greatest residue among all possible R2

is 12 (if x7 = 1 and x5 = x6 = x8 = 0; see the fifth line

of Table II, highlighted gray color);

– max{Q3} = 295 (9-bit number), when X3 = 28 · x9 +
29 · x10 + 210 · x11 + 211 · x12 > 3834 (see the last line

of Table III), and the greatest residue among all possible

R3 is 12 (if x10 = x12 = 1 and x9 = x11 = 0; see the

eleventh line of Table III, highlighted gray color);

– max{Q4} = 4726 (13-bit number), when X4 = 212 ·
x13 + 213 · x14 + 214 · x15 + 215 · x16 > 61437 (see the

last line of Table IV), and the greatest residue among all

possible R4 is 12 (if x15 = x16 = 1 and x13 = x14 =
0; see the thirteenth line of Table IV, highlighted gray

color).

D. Boolean Functions Minimization and Synthesis

The technique of Boolean minimization critically influences

the hardware cost and the critical path of the division. Tables

II, III, IV consist of 2k lines, k columns of inputs, j columns of

outputs for Qi and k columns for Ri. The resulting systems of

Boolean functions are minimized with two-level or multi-level

minimization approaches, for example by applying Espresso

[34] and ABC [35] tools. This research is focused on the

division for FPGA with 6-input LUTs, thus performing multi-

level minimization for 6-input LUTs in ABC: fpga -K 6.

For the example provided in this paper, a 16-bit dividend

X and 4-bit divisor d, the number of bits of the sub-dividend

and sub-quotients is presented in Table I. As far as the result

of the division of Q1 by the k-bit divisor is 1-bit number

(Q1 = 1 if X1 − d ≥ 0, else Q1 = 0) and k-bit residue, thus

the generation of the truth table for Q1 and R1 is omitted (as

already mentioned in the previous subsection).

E. Divider architecture

The proposed divider has two sorts of elements: subcoder
(SC) and adders (S). The subcoders transform sub-dividend

into sub-quotients and residues. The adders calculate the sum

of sub-quotients. The scheme for division that supports the

proposal is the one already presented in Fig. 1.

TABLE I: Sub-dividends and sub-quotients.

X

X1 x4 x3 x2 x1 (4 bits)

X2 x8 x7 x6 x5 (4 bits)

X3 x12 x11 x10 x9 (4 bits)

X4 x16 x15 x14 x13 (4 bits)

Q

Q2
Q2

1 q24 , q
2
3 , q

2
2 , q

2
1 (4 bits)

Q2
2 q25 (1 bit)

Q3

Q3
1 q34 , q

3
3 , q

3
2 , q

3
1 (4 bits)

Q3
2 q38 , q

3
7 , q

3
6 , q

3
5 (4 bits)

Q3
3 q39 (1 bit)

Q4

Q4
1 q44 , q

4
3 , q

4
2 , q

4
1 (4 bits)

Q4
2 q48 , q

4
7 , q

4
6 , q

4
5 (4 bits)

Q4
3 q412, q

4
11, q

4
10, q

4
9 (4 bits)

Q4
3 q413 (1 bits)

TABLE II: Truth table for Q2 and R2.

X2 Q2 R2

x8x7x6x5 Q2
2 Q2

1
0 0 0 0 0 0000 0000
0 0 0 1 0 0001 0011
0 0 1 0 0 0010 0110
0 0 1 1 0 0011 1001

0 1 0 0 0 0100 1100
0 1 0 1 0 0110 0010
0 1 1 0 0 0111 0101
0 1 1 1 0 1000 1000
1 0 0 0 0 1001 1011
1 0 0 1 0 1011 0001
1 0 1 0 0 1100 0100
1 0 1 1 0 1101 0111

1 1 0 0 0 1110 1010

1 1 0 1 1 0000 0000

1 1 1 0 1 0001 0011

1 1 1 1 1 0010 0110

Let’s continue the explanation with the referred example,

and highlight in the truth tables the binary subvectors with the

highest value in the following way:

– by yellow the sub-quotients max{Q2
1} = max{Q3

1} =

max{Q4
1} = (1110);

– by green sub-quotients max{Q2
2} = (1) and

max{Q3
2} = max{Q4

2} = (1110);
– by orange sub-quotients max{Q3

3} = (1) and

Q4
3(1110);

– by blue sub-quotients max{Q4
4} = (1);

The proposed architecture for division is depicted in Fig.

2, where purple and red elements calculate quotient and

residue at the same time; only red elements are required

to calculate the residue. The procedure for division (X)

by a constant (d) is presented in Algorithm 1. It is easy

understandable as a generalization of the division method

described for the example of the dividend X with 16 bits

and the divisor the constant value d = 13. The first sub-coder

TABLE III: Truth table for Q3 and R3.

X3 Q3 R3

x12x11x10x9 Q3
3 Q3

2 Q3
1

0 0 0 0 0 0000 0000 0000
0 0 0 1 0 0001 0011 1001
0 0 1 0 0 0010 0111 0101
0 0 1 1 0 0011 1011 0001

0 1 0 0 0 0100 1110 1010
0 1 0 1 0 0110 0010 0110
0 1 1 0 0 0111 0110 0010
0 1 1 1 0 1000 1001 1011
1 0 0 0 0 1001 1101 0111
1 0 0 1 0 1011 0001 0011

1 0 1 0 0 1100 0100 1100
1 0 1 1 0 1101 1000 1000

1 1 0 0 0 1110 1100 0100

1 1 0 1 1 0000 0000 0000

1 1 1 0 1 0001 0011 1001

1 1 1 1 1 0010 0111 0101

TABLE IV: Truth table for Q4 and R4.

X4 Q4 R4

x16x15x14x13 Q4
4 Q4

3 Q4
2 Q4

1
0 0 0 0 0 0000 0000 0000 0000
0 0 0 1 0 0001 0011 1011 0001
0 0 1 0 0 0010 0111 0110 0010
0 0 1 1 0 0011 1011 0001 0011

0 1 0 0 0 0100 1110 1100 0100
0 1 0 1 0 0110 0010 0111 0101
0 1 1 0 0 0111 0110 0010 0110
0 1 1 1 0 1000 1001 1101 0111
1 0 0 0 0 1001 1101 1000 1000
1 0 0 1 0 1011 0001 0011 1001

1 0 1 0 0 1100 0100 1110 1010
1 0 1 1 0 1101 1000 1001 1011

1 1 0 0 0 1110 1100 0100 1100

1 1 0 1 1 0000 0000 0000 0000

1 1 1 0 1 0001 0011 1011 0001

1 1 1 1 1 0010 0111 0110 0010

SC1 calculates Q2 and R2, according to Table II; the second

sub-coder SC2, calculates Q3 and R3, according to Table III;

the third sub-coder SC3 calculates Q3 and R3, according to

Table IV.

The first adder (S1) calculates X1 + R2 + R3 + R4 = S1.

As we mentioned, max{X1} = (1111) and max{R2} =
max{R3} = max{R4} = (1100), i.e. S1 ≤ 15 + 12 + 12 +
12 = 51 (6-bit number). Note, that:

– the outputs of S1 are the inputs of the sub-coder SC4.

This sub-coder implements the truth table with 6 in-

put columns s16, s
1
5, s

1
4, s

1
3, s

1
2, s

1
1, 52 lines and 6 output

columns, as represented on Table V;

– the four right most columns of Table V represent not only

the residue from the division of S1 by 13, but also the

general residue R = (r4, r3, r2, r1) from the division of

X by 13 – R;

– the two most significant output bits of SC4 QR =
(qr2, qr1) represent the quotient from the division of S1

by 13.

The inputs of the adder S2 include 4-bit Q2
1, Q

3
1, Q

4
1 and

TABLE V: Truth table for Q4 and R.

S1 QR R
s16s

1
5s

1
4s

1
3s

1
2s

1
1 qr2qr1

0 0 0 0 0 0 0 0 0000
0 0 0 0 0 1 0 0 0001
0 0 0 0 1 0 0 0 0010

...
0 1 1 0 1 0 1 0 0000

...
1 0 0 1 1 0 1 0 1100

...
1 1 0 0 1 0 1 1 1011
1 1 0 0 1 1 1 1 1100

the output S2 is the sum. According to the truth tables

max{Q2
1} = max{Q3

1} = max{Q4
1} = 14 (see yellow

sub-quotients). Thus max{S2} = 14 + 14 + 14 = 42 (6-bit

number S2 = (s26, s
2
5, s

2
4, s

2
3, s

2
2, s

2
1).

The inputs of the adder S3 include 1-bit Q2
2, 4-bit Q3

2, Q
4
2

and 2-bit (s26, s
2
5) carried from S2: (s26, s

2
5) + Q2

2 + Q3
2 +

Q4
2 = S2. According to the truth tables max{Q2

2} = 1 and

max{Q3
2} = max{Q4

2} = 14 (see green sub-quotients).

Since max{S2} = 42, thus max{(s26, s25)} = (10), and

max{S3} = (s26, s
2
5) + 1 + 14 + 14 = 31 (5-bit number

S3 = (s35, s
3
4, s

3
3, s

3
2, s

3
1).

The inputs of the adder S4 include 1-bit Q3
3, 4-bit Q4

3 and

1-bit s35 carry out from S3: (s35) +Q3
3 +Q4

3 = S4. According

to the truth tables max{Q3
3} = 1 and max{Q4

3} = 14
(see orange sub-quotients). Since s35 is 1-bit number, thus

max{(s35)} = (1), but the case s35 and Q3
3 equals 1 can

not be achieved. Thus, max{S4} = 15 (4-bit number S4 =
(s44, s

4
3, s

4
2, s

4
1).

The adder S5 calculates the final value of the quotient, by

adding the intermediate quotient QT and the 2-bit output RQ
of the sub-coder SC4. This sub-coder calculates the value

of ”accumulated” sub-residues. The 13-bit output of the fifth

adder consists of the addition of the four least significant bits

of S2, S3, S4 and Q4
4.

Generally, the scheme of the n-bit divider by k-bit constant

includes s = �n
k � subcoders (SCs) and s + 1 chain of

adders (Ss). The key role in the efficiency of the divider

is played by the interconnection between elements and the

way the minimization is performed. This article explores the

design on FPGA. The main cell of an FPGA is the LUT.

Current FPGAs provide 5- and 6-input LUTs. LUTs allow

truth tables of Boolean functions to be implemented. It means

that a scheme of the divider by 5-bit and 6-bit divisor can

be designed without Boolean functions minimization, i.e. SCs

can be described by full disjunctive normal forms. The way of

splitting Boolean functions for 7-bit and more is significantly

more important than the minimization for the design on FPGA.

Designing for ASICs is strongly related to the custom library

of elements. In this case, the crucial role for the efficiency

of a scheme belongs to the minimization or representation of

Boolean functions.

The second key point of the design of an efficient architec-

ture is the interconnection between subcoders and adders, and

Fig. 2: Logic scheme of 16-bit divider by 13.

between adders. As was mentioned, there are in general s SCs

and a chain of s + 1 adders. The Xilinx tools automatically

insert a 13-bit adder for S5 in Fig. 2, nevertheless, QT is

13-bit and QR is 2-bit numbers. As a result, most probably

Xilinx tools automatically design the scheme of S5 with half-

adders and 12 full adders. This redundancy can be fixed by

reducing the chain of adders or interconnections at the output

of SC4 with S3 or S4. This upgrade reduces the scheme of the

whole divisor and reduces area costs. This type of optimization

of the divisor architecture and micro-architecture of adders

and subcoders is appropriate, as referred for this particular

example. The optimization is specific, according to the bit

range of the dividend and the value of the divisor.

In this paper, we do not optimize the architecture and the

micro-architecture but just declare a new common approach

to division. The Boolean minimization and uniqueness of the

data-path optimization make harder the generalization of the

proposed approach for design automation.

III. IMPLEMENTATION

The implementation involves also the place and routing

process. It divides the whole logic circuit into sub-blocks that

can fit into the FPGA logic blocks, such as combinational logic

blocks (CLB, which consists of LUTs), input-output blocks

(IOs), block-RAMs, block multipliers, DSP, etc. The imple-

mentation places the circuit into logic blocks according to the

constraints and connects the logic blocks. The performance is

Algorithm 1 Algorithm for division of X by d.

Input:
X = (xn, xn−1, ..., x1) - dividend

d - divider

Q - quotient of the division of X by d
R - residue from the division of X by d

Calculations:
1.
BR(X) = n - BR returns bit-range of X
BR(d) = k

p =
⌉
n
k

⌈
SP (X, k, p) = (Xp, Xp−1, . . . , X1) - SP splits X into p
k-bit sub-vectors

2.
SC(X2) =

X2

d = {Q2, R2} - SC returns the quotient Q2

and the residue R2 of the division of X2 by d
SC(X3) = {Q3, R3}
· · ·
SC(Xi) = {Qi, Ri}
· · ·
SC(Xp) = {Qp, Rp}
3.
SP (Q2, k, p1) = (Q2

p1
, Q2

p1−1, · · · , Q2
1), where

SP splits sub-quotient Q2 into p1 k-bit vectors

SP (Q3, k, p2) = (Q3
p2
, Q3

p2−1, · · · , Q3
1)

· · ·
SP (Qi, k, pi−1) = (Qi

pi−1
, Qi

pi−1−1, · · · , Qi
1)

· · ·
SP (Qp, k, pp−1) = (Qp

pp−1
, Qp

pp−1−1, · · · , Qp
1)

4.
S1 = X1 +R2 + · · ·+Rp

SC(S1) = {QR,R} - R is the residue of the division

5.
S2 = QR+

p∑
j=2

Qj
1

S3 = S2[BR(S2) : k + 1] +
p∑

j=2

Qj
2, where S2[BR(S2 :

k + 1)] is the most significant BR(S2)− k bits of S2

· · ·
Si = Si−1[BR(Si−1) : k + 1] +

p∑
j=2

Qj
i−1,

if j < i− 1 then Qj
i−1 = 0

· · ·
Sp = Sp−1[BR(Sp−1) : k + 1] +

p∑
j=2

Qj
p−1

Sp+1 = Sp[BR(Sp) : k + 1] +Qp
p

Output
Q = (Sp+1&Sp[k : 1]& · · ·&S2[k : 1]), where

& means concatenation

R has been calculated on the step 4.

defined by the total delay time which can be calculated as (4).

total delay =

data path (logic delay) + routing path delay +

collateral path (skew, uncertainty, etc.). (4)

The implementation maps the architecture of the divider into

LUTs. It means that logic elements of the proposed architec-

ture, adders and subcoders, are automatically represented in

systems of a Boolean function. For instance, full and half-

adder will be placed into the same hardware resources on

the FPGA, despite the scheme of the half-adder consists of

two 2−input logic elements while the full adder includes five

2−input logic elements. Thus, it is not relevant which type

of adder architecture is adopted, such as ripple-carry or carry-

lookahead, as an optimal form of representation of Boolean

functions. The attention is focused on features of FPGA, such

as the number of inputs of the LUT, tipycally 4, 5, and 6,

and interconnection between groups of elements, rather than

the micro-architecture of basic elements. The implementation

of the proposed approach is scalable for an arbitrary number

of LUTs’ inputs, number of inputs of subcoders, for values

of dividends and divisors. In this paper, we consider 6-input

LUTs and 6-input subcoders.

Let us suppose that the target FPGA is equipped with

3−input LUTs. In this system of Boolean functions for Q2

and R2 (see Table II), which describes SC1 and depends

on four variables x5, x6, x7, x8, might be represented as the

composition of functions (ABC tool [35] has been applied for

splitting the Table II) dependent on three variables (5).

q25 = x8 · x7 · u1; q24 = (x7 · u8) ∨ (x8 · x7);

q23 = (u2 · u3) ∨ u4; q22 = (x7 · u5) ∨ (x7 · u6);

q21 = u11 · u12 ∨ u13;

r24 = u8 ∨ u9; r23 = x6 · u10 ∨ u9;

r22 = (x7 · u6) ∨ (x7 · u7); r21 = q21 ,

(5)

where

u1 = x5 · x6; u2 = (x6 · x8) ∨ (x6 · x8);

u3 = x5 · x7; u4 = (x6 ∨ x7 ∨ x8) · (x6 ∨ x7 ∨ x8);

u5 = x8 · ((x5 · x6) ∨ (x5 · x6)) ∨ x8 · ((x5 · x6) ∨ (x5 · x6));

u6 = (x6 ∨ x8) · (x5 ∨ x6 ∨ x8);

u7 = (x5 · x6 · x8) ∨ (x8 · (x5 ∨ x6));

u8 = (x5 ∨ x6 ∨ x8) · (x5 ∨ x6 ∨ x8);

u9 = x7 · x8 · u11; u10 = (x5 · u8) ∨ (x5 · x7 · x8);

u11 = x5 · x6; u12 = x7 · x8;

u13 = (x5 ∨ x7) · (x5 ∨ x6 ∨ x6).

Thus, the implementation maps the scheme of SC1, for

calculating Q2 and R2, as shown in Fig. 3.

IV. EXPERIMENTAL RESULTS

This section provides experimental results to evaluate the

proposed approach on FPGAs, equipped 6-input LUTs, and

compares these results with the state-of-the-art approaches 1.

1Verilog-files prepared for these experiments can be found in [38].

Fig. 3: LUTs realization of Q2 and R2.

Fig. 4: Synthesis settings.

Performance, the critical path as total delay of the implemen-

tation, and the circuit area (LUTs) are presented, for the Xilinx

Vivado version 2019.1.

A. Evaluating dividers: proposed vs generated with Vivado

This subsection compares the proposed structures to

the ones automatically generated with Vivado for Virtex-7

(xc7v585tffg1157-3). The modeling was performed for three

prime dividers d = 47, 113, 241 (6-, 7- and 8-bit numbers,

respectively) and for n-bit ranges of X , where n = 24, 36,

48, and 60 bits. Performance is measured as the critical path

from pin-to-pin (from inputs to outputs) on FPGA. The prime

numbers for the divisor are typically used, for example in

residue number systems.

An FPGA is typically equipped with embedded elements

such block-RAMs, DSPs, multipliers, and others. To compare

Xilinx division with the proposed approach, we exclude the

usage of embedded elements and utilize only CLBs (LUTs)

and IOs (see Fig. 4) in this section.

The proposed approach of division (proposed in Table VI)

has been designed using Verilog and compared in this section

TABLE VI: Quotient and residue calculation on Virtex-7.

Proposed Vivado

Delay Area Delay Area

d n ns #LUTs ns #LUTs

47

24 9.4 126 12.7 407

36 15.3 258 20.2 780

48 21.3 395 17.9 1145

60 27.7 483 19.5 1642

113

24 10.0 221 12.8 434

36 14.0 507 14.3 830

48 20.0 496 18.3 1384

60 27.3 694 17.6 2401

241

24 11.1 248 13.8 549

36 12.8 471 15.4 722

48 16.6 729 18.7 1756

60 23.6 763 19.8 1941

with Xilinx functions division and modulus at the same time

(Vivado in Table VI):

assign Q = X / d; assign R = X % d.

The proposed division approach shows a reduction on the

number of LUTs compared with embedded algorithms in

Xilinx for:

• d = 47, in more than 3x for the considered values of n;

• d = 113, between 1.6x for n = 36, and 3.5x for n = 60;

• d = 241, between 1.6x for n = 36, and 2.5x times for

n = 60.

The proposed approach speedup the division:

• up to 20% for 24-bit dividend and all considered divisors;

• 25% for d = 47 and on 17% for 241 for 36-bit dividend;

• 11% for d = 241 add 48-bit dividend.

We conducted experiments for up to 100-bit for X and up

to 12-bit divisors. Experimental results show up to three times

reduction in area costs compared with the Xilinx approach,

and equivalent performance for up to 48-bit dividends.

B. Evaluating dividers: proposed vs state-of-the-art

This subsection compares the proposed dividers’ architec-

tures with state-of-the-art hardware architectures for divisors

by constants [37], both implemented on the Kintex-7. The

modeling was performed for four dividers d = 3, 5, 11, 23 (2-,

3-, 4- and 5-bit numbers, respectively), and three bit-ranges

for X , n = 16, 32, and 64 bits. In order to compare the area

and the delay, the results provided in [37], for the architecture

based on multiplication by the reciprocal (Recip), the Binary

Tree Constant Divider (BTCD), and the Linear Architecture

(LinArch), are herein directly presented in Tables VII and VIII.

Table VII provides the results of the architectures to cal-

culate quotients and residues for d = 3, 5, 11, 23, where

BR means the number of Block-RAMs. Table VIII provides

the results of the architectures to calculate only residues for

d = 3, 5 and the LinArch and the BTCD architectures, and

for d = 3, 23 and the Recip architecture.

TABLE VII: Quotient and residue calculation on Kintex-7,

comparison with the state-of-the-art [37].

Proposed Vivado LinArch [37] BTCD [37] Recip [37]

Delay Area Delay Area Delay Area Delay Area Delay Area

d n ns #LUTs ns #LUTs ns #LUTs ns #LUTs ns #LUTs

3

16 4.1 40 7.3 180 3.6 17 3.7 37 4.5 52

32 11.4 98 11.8 612 6.0 32 4.8 95 6.1 139

64 27.5 379 17.5 2004 13.5 63 6.2 225 8.5 346

5

16 4.0 52 4.0 31 4.4 21 3.8 44 4.9 54

32 10.6 123 10.4 719 9.3 45 4.7 109 7.0 140

64 27.3 386 15.9 2311 20.1 93 6.7 270 8.6 346

11

16 3.9 53 6.1 40 8.0 39 3.8 79 4.8 104

32 10.7 159 9.8 566 17.9 87 6.1 212 6.6 219

64 26.9 436 15.1 2052 39.0 183 8.8 526 8.4 503

23

16 3.9 52 7.1 129 7.4 69 5.6 197 5.1 83

32 10.4 187 10.2 445 18.5 165 6.8 1 BR 7.3 169

+436

64 26.1 493 14.4 1542 36.6 357 6.5 2.5 BR 9.0 401

+959

TABLE VIII: Only residue calculation on Kintex-7, compari-

son with the state-of-the-art [37].

Proposed Vivado LinArch [37] BTCD [37] Recip [37]

d n ns LUTs ns LUTs ns LUTs ns LUTs ns LUTs

3

16 3.6 9 5.4 57 3.5 5 3.7 5 4.2 51

32 3.9 21 7.5 191 6.5 11 3.8 12 6.0 138

64 4.3 47 10.2 637 14.2 21 4.8 25 7.9 345

5

16 3.6 21 3.7 19 4.4 14 3.6 14 – –

32 4.0 33 7.7 259 9.3 45 3.7 29 – –

64 4.8 66 9.4 779 20.1 93 4.5 62 – –

23

16 3.7 23 5.5 49 – – – – 3.8 71

32 5.1 74 7.3 159 – – – – 5.8 158

64 5.9 151 8.9 536 – – – – 7.9 390

According to the experimental results, the proposed ap-

proach provides the best trade-off for the five considered

approaches with significant advantages:

• performance and area cost of the proposed architecture

for d = 23 and n = 16 and quotient-residue calculation

is superior to all the others;

• performance and area costs of the proposed architecture

are always better for d = 23, and any value of n for

residue-only calculation, which means that the proposed

architecture is scalable, for larger values of d;

• in comparison with the LinArch, the delay associated

with the proposed architecture is significantly less when

the value of the constant d increases;

• as expected, for larger values of the constant (d = 23),

the BTCD architecture exhibits less delay but at the cost

of a significantly larger circuit area.

V. CONCLUSIONS AND FURTHER WORK

This paper proposed an algorithm for hardware integer

division by a constant. The most distinguishing feature is that

the algorithm is scalable for an arbitrary value of dividend

(X) and an arbitrary value of divisor (d). The limitation

of the divisor depends on the ability to minimize systems

of Boolean functions. The proposed approach is based only

on combination logic, adders, and encoders, which represent

systems of Boolean functions. The Boolean minimization

approach significantly influences the hardware cost and the

critical path of the scheme. Experimental results show the

superiority of the proposal, in comparison to the Xilinx Vivado

hardware divisor automatically generated by the Xilinx Vivado

and the state-of-the-art divisors by constants. It is shown that

the proposed approach is scalable, is more efficient than the

others for larger values of the constant divisor, and provides

a good trade-off between performance and cost. This paper

does not consider the optimization of the adders tree in the

architecture of the divisor. This is a topic for future research

in the direction this paper opened for hardware division by

constants.

ACKNOWLEDGMENT

The authors would like to express sincere thanks to anony-

mous reviewers, which allow them to significantly improve the

earlier version of this paper. This work was partially supported

by FCT (Fundação para a Ciência e a Tecnologia, Portugal),

through the UIDB/50021/2020 project, and EuroHPC Joint

Undertaking through grant agreement No 956213 (SparCity).

REFERENCES

[1] N. Takagi, S. Kadowaki, K. Takagi, ”A hardware algorithm for integer
division”, 17th IEEE Symposium on Computer Arithmetic (ARITH’05),
2005, Cape Cod, MA, USA, 27-29 June, 2005.

[2] U.S. Patankar, M.E. Flores, A. Koel, ”Novel data dependent divider
circuit block implementation for complex division and area critical
applications”, Scientific Reports, Springer Nature, 2023.

[3] U.S. Patankar, A. Koel, ”Review of basic classes of dividers based on
division algorithm”, IEEE Open Access, Vol. 9, 2021.

[4] A. Yasin, T. Su, S. Pillement, M. Ciesielski, ”Functional verification
of hardware dividers using algebraic model”, 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC),
Cuzco, Peru, 06-09 Oct. 2019.

[5] E. M. Clarke, S. M. German, X. Zhao, ”Verifying the SRT division
algorithm using theorem proving techniques”, in Computer Aided Ver-
ification (Lecture Notes in Computer Science), vol. 1102, R. Alur and
T. A. Henzinger, Eds. Berlin, Germany: Springer, 1996, pp. 111-122,

[6] D. Piso, J.A. Pineiro, J.D. Bruguera, ”Analysis of the impact of different
methods for division/square root computation in the performance of a
superscalar microprocessor”, Proc. Euromicro Symposium on Digital
System Design. Architectures, Methods and Tools, 2002, pp. 218–225.

[7] P. Sinha, ”Smart Sensors Use DSCs for Embedded Signal Processing”,
Microchip Technology Inc., 2021.

[8] I. Koren, ”Computer Arithmetic Algorthms”, 2nd ed., A K Peters,
Natick, Massachusets, 2002.

[9] K. Tatas, D. J. Soudris, D. Siomos, M. Dasygenis, A. Thanailakis, ”A
novel division algorithm for parallel and sequential processing”, Proc.
9th Int. Conf. Electron., Circuits, Syst., Dubrovnik, Croatia, Sep. 2002,
pp-553-556.

[10] D. G. Bailey, ”Space eficient division on FPGAs”, Proc. Electron. New
Zealand Conf., 2006, pp. 206-211.

[11] S. F. Obermann, M. J. Flynn, ”Division algorithms and implementa-
tions”, IEEE Trans. Comput., vol. 46, no. 8, pp. 833-854, Aug. 1997.

[12] S. Dixit, M. Nadeem, ”FPGA accomplishment of a 16-bit divider”,
Imperial J. Interdiscipl. Res., vol. 3, no. 2, pp. 140-143, 2017.

[13] M. F. Kasim, T. Adiono, M. F. Zakiy, M. Fahreza, ”FPGA implementa-
tion of Fixed-point divider using pre-computed values”, in Proc. Tech-
nol., vol. 11, Jun. 2013, pp. 206-211.

[14] R. S. Hongal, D. J. Anita, ”Comparative study of different division
algorithms for fixed and floating point arithmetic unit for embedded
applications”, Int. J. Comput. Sci. Eng., vol. 4, no. 9, pp. 48-54, 2016.

[15] N. Boullis, A. Tisserand, ”On digit-recurrence division algorithms for
self-timed circuits”, INRIA-Institut Nat. De Recherche En Informatique
Et En Automatique, France, Tech. Rep. RR-4221, Jul. 2001.

[16] J. Detrey, F.A. de Dinechin, ”A Tool for unbiased comparison between
logarithmic and floating-point arithmetic”, VLSI Signal Process. Syst.
Signal Image Video Technol. 49, 161–175 (2007).

[17] M.F. Kasim, T. Adiono, M. Fahreza, M.F. Zakiy, ”FPGA implementation
of fixed-point divider using pre-computed values”, Procedia Technol. 11,
2013, 206–211.

[18] S.F. Oberman, M.J. Flynn, ”An analysis of division algorithms and im-
plementations”, Technical Report CSL-TR-95-675 (StanfordUniversity,
1995).

[19] S. Kaur, M. Singh, and R. Agarwal, ”VHDL implementation of non-
restoring division algorithm using high-speed adder/subtractor”, Int. J.
Adv. Res. Electr., Electron. Instrum. Eng., vol. 2, no. 7, pp. 3317-3324,
Jul. 2013.

[20] E. Matthews, A. Lu, Z. Fang, L. Shannon, ”Rethinking integer divider
design for FPGA-based soft-processors”, Proc. IEEE 27th Annu. Int.
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2019, pp.
289-297.

[21] B. Mehta, J. Talukdar, S. Gajjar, ”High speed SRT divider for intelligent
embedded system”, 2017 International Conference on Soft Computing
and Its Engineering Applications (icSoftComp), 2017, pp. 1–5.

[22] J. Kumari, M. Y. Yasin, ”Design and Soft Implementation of N-bit SRT
Divider on FPGA through VHDL”, Int. J. Innov. Eng., Sci. Manage.,
vol. 3, no. 4, pp. 13-19, Apr. 2015.

[23] D.A. Patterson, J.L. Hennessy, ”Computer organization & design”, 4th
ed., Morgan Kaufmann, San Francisco, California, 2009.

[24] J.L. Hennessy, D.A. Patterson, ”Computer architecture. A quantitative
approach”, 5th ed., Morgan Kaufmann, San Francisco, California, 2012.

[25] M. Lu, ”Arithmetic and logic in computer systems”, Wiley-Interscience,
Hoboken, New Jersey, 2004.

[26] S.L. Harris, D.M. Harris, ”Digital design and computer architecture”,
Elselvier, 2016.

[27] R. Trummer, P. Zinterhof, R. Trobec, ”A high-performance data-
dependent hardware divider”, Systems and Simulation, Parallel Numer-
ics. Ljubljana, Slovenia: Salzburg Univ.; Ljubljana Josef Stefan Institute,
2005, ch. 7, pp. 193-206.

[28] T Drane, W.-C. Cheung, G. Constantinides, ”Correctly rounded constant
integer division via multiply-add”, 2012 IEEE International Symposium
on Circuits and Systems (ISCAS), Seoul, South Korea, 20-23 May, 2012,
pp. 1243-1246.

[29] A.R. Omondi, ”Cryptography arithmetic. Algorithms and hardware
architectures”, Springer Nature Switzerland, 2020.

[30] W. Stallings, ”Cryptography and network security: principles and prac-
tice. 7th Edition”, Pearson, 2017.

[31] T. Granlund, P. Montgomery, ”Division by invariant integers using
multiplication”, PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementation, Aug.
1994, pp. 61–72.

[32] J.-M. Muller, A. Tisserand, B. de Dinechin, C. Monat, ”Division by
constant for the ST100 DSP microprocessor”, 17th IEEE Symposium
on Computer Arithmetic (ARITH’05), Jun. 2005, pp. 124–130.

[33] P.V.A. Mohan, ”Residue number system. Theory and applications”,
Springer International Publishing, 2016, 351 p.

[34] https://embedded.eecs.berkeley.edu/pubs/downloads/espresso
[35] https://people.eecs.berkeley.edu/∼alanmi/abc/
[36] F. de Dinechin, L.-S. Didier, ”Table-based division by small integer con-

stants”, Int. Symp. Applied Reconfigurable Computing (ARC), Lecture
Notes in Computer Science, vol. 7199, pp. 53-63, Hong Kong, China,
Mar. 2012.

[37] H. F. Ugurdag, F. de Dinechin, Y. S. Gener, S. Gören, L.-S. Didier,
”Hardware Division by Small Integer Constants”, IEEE Transactions on
Computers, Vol. 66, No. 12, Dec. 2017.

[38] https://github.com/ZeboZebo702/ARITH 2023 constant division

